Neurobiology of Disease A Switch in Retrograde Signaling from Survival to Stress in Rapid-Onset Neurodegeneration
نویسندگان
چکیده
Retrograde axonal transport of cellular signals driven by dynein is vital for neuronal survival. Mouse models with defects in the retrograde transport machinery, including the Loa mouse (point mutation in dynein) and the Tg dynamitin mouse (overexpression of dynamitin), exhibit mild neurodegenerative disease. Transport defects have also been observed in more rapidly progressive neurodegeneration, such as that observed in the SOD1 G93A transgenic mouse model for familial amyotrophic lateral sclerosis (ALS). Here, we test the hypothesis that alterations in retrograde signaling lead to neurodegeneration. In vivo, in vitro, and live-cell imaging motility assays show misregulation of transport and inhibition of retrograde signaling in the SOD1 G93A model. However, similar inhibition is also seen in the Loa and Tg dynamitin mouse models. Thus, slowing of retrograde signaling leads only to mild degeneration and cannot explain ALS etiology. To further pursue this question, we used a proteomics approach to investigate dynein-associated retrograde signaling. These data indicate a significant decrease in retrograde survival factors, including P-Trk (phospho-Trk) and P-Erk1/2, and an increase in retrograde stress factor signaling, including P-JNK (phosphorylated c-Jun N-terminal kinase), caspase-8, and p75 NTR cleavage fragment in the SOD1 G93A model; similar changes are not seen in the Loa mouse. Cocultures of motor neurons and glia expressing mutant SOD1 (mSOD1) in compartmentalized chambers indicate that inhibition of retrograde stress signaling is sufficient to block activation of cellular stress pathways and to rescue motor neurons from mSOD1-induced toxicity. Hence, a shift from survival-promoting to death-promoting retrograde signaling may be key to the rapid onset of neurodegeneration seen in ALS.
منابع مشابه
A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration.
Retrograde axonal transport of cellular signals driven by dynein is vital for neuronal survival. Mouse models with defects in the retrograde transport machinery, including the Loa mouse (point mutation in dynein) and the Tg(dynamitin) mouse (overexpression of dynamitin), exhibit mild neurodegenerative disease. Transport defects have also been observed in more rapidly progressive neurodegenerati...
متن کاملAlterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice
Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...
متن کاملI-33: Oxidative Stress Responses in EarlyPregnancy
Background: Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Materials and Methods: Laboratory-based analysis of endometrial biopsies and primary endometrial cultures. Results: Using primary cultures, we show that modest levels of reactiv...
متن کاملCrocin Acting as a Neuroprotective Agent against Methamphetamine-induced Neurodegeneration via CREB-BDNF Signaling Pathway
Methamphetamine (METH) abuse causes neurodegeneration. Medicinal herb such as crocin has neuroprotective properties. The current study evaluates the role of CREB-BDNF signaling pathway in mediating the neuroprotective effects of crocin against METH-induced neurodegeneration in rats. Sixty adult male rats were divided randomly into group 1 and group 2 which received 0.7 mL/rat ...
متن کاملChaperone networks: tipping the balance in protein folding diseases.
Adult-onset neurodegeneration and other protein conformational diseases are associated with the appearance, persistence, and accumulation of misfolded and aggregation-prone proteins. To protect the proteome from long-term damage, the cell expresses a highly integrated protein homeostasis (proteostasis) machinery to ensure that proteins are properly expressed, folded, and cleared, and to recogni...
متن کامل